工业自动化系统中PID控制器的参数自整定方法研究

刘杰

中国石化中原石油化工有限责任公司 河南 濮阳 457000

摘 要:在工业自动化进程中,PID 控制器的参数自整定至关重要。基于继电反馈、模型辨识、智能算法以及专家经验的各类自整定方法不断涌现,各有其独特优势与适用场景。系统非线性及时变性、噪声与扰动,以及多变量耦合等问题,给参数自整定带来诸多挑战。引入自适应机制、增强抗干扰能力,以及采用多变量解耦与协同整定等手段,可有效应对这些难题,推动PID 控制器在复杂工业环境中实现更精准、高效的控制。

关键词:工业自动化系统; PID控制器; 参数自整定; 方法

引言

在工业自动化领域、PID控制器是保障系统稳定运行的关键环节。其参数的精准整定直接决定控制性能优劣。然而,工业过程的复杂性与多变性,使得传统固定参数PID控制难以满足需求。本文深入剖析基于继电反馈、模型辨识、智能算法、专家经验等多种参数自整定方法,同时探讨其在系统非线性、噪声干扰及多变量耦合等复杂工况下遭遇的挑战,并提出创新性解决思路,旨在为提升工业自动化系统控制水平提供有力支撑。

1 PID控制器概述

在复杂的生产运行体系中,各类参数的动态平衡直 接关系到整体流程的稳定性,而PID控制器作为实现这 一平衡的核心手段,始终扮演着精准调节的角色。其通 过比例、积分、微分三个环节的协同作用,持续感知系 统输出与设定目标的偏差,借助实时运算生成调控指令, 确保关键变量始终维持在预设区间,这种动态响应能力 让整个生产链条得以在波动环境中保持有序运转。比例 环节依据偏差大小即时输出调节信号, 快速抵消大部分 扰动带来的影响,为系统提供初步的稳定性支撑;积分 环节则专注于消除长期存在的稳态偏差,通过对累积误 差的持续修正,避免微小偏差随时间推移引发系统性波 动; 微分环节则通过预判偏差变化的趋势, 提前施加反 向调节,有效抑制参数突变可能导致的超调现象,三者 的有机融合形成了一套完整的闭环控制逻辑。这种控制 方式能够适应不同工况下的参数特性,无论是面对缓慢 变化的工艺条件,还是应对突发的外部扰动,都能通过 参数的动态调整保持调节精度,从而减少因变量波动造 成的资源损耗,提升整体运行效率。在物料转化、能量 传递等关键环节,其细腻的调节能力可以优化反应条件, 让各类工艺参数在协同作用中达到最佳状态,间接推动 整个生产体系向更高效、更稳定的方向演进。通过与各 类传感设备和执行机构的无缝衔接, PID控制器将分散 的控制节点整合为统一的调控网络,使局部调节与整体 平衡形成联动,这种系统性的控制思维不仅简化了复杂 流程的管理难度,更在潜移默化中构建起一套自适应的 运行机制,为持续优化生产模式提供了坚实的技术支撑。

2 工业自动化系统中PID控制器的参数自整定方法 分析

2.1 基于继电反馈的自整定方法

(1) 该方法通过在控制回路中引入周期性继电特性 信号, 使系统产生等幅振荡, 利用振荡过程中获取的临 界参数(如振幅、周期)推算PID控制器的初始参数。 其无需精确数学模型,在复杂工艺环境里适应性好,尤 其契合难以精确建模的非线性环节,能在物料混合、温 度调节等动态复杂场景快速生成基础参数, 为后续精细 优化提供起点。(2) 其核心逻辑在于将非线性继电反馈 与线性控制规律相结合,通过检测系统在临界状态下的 动态响应特征, 自动匹配预设的参数计算公式, 省去了 人工试凑的繁琐过程,在处理高粘度流体输送、多相流 反应等存在强耦合特性的控制对象时,可减少因参数设 定偏差导致的调节滞后, 让系统在动态平衡中更快趋于 稳定。(3)改进型继电反馈算法通过引入可变幅频特性, 能在避免系统进入深度振荡的同时获取更丰富的动态信 息,这种优化让其在处理含有纯滞后环节的工艺参数时, 既保持了快速整定的优势,又降低了对生产过程的扰动, 使整定过程与正常生产节奏形成良性互动,提升参数调 试阶段的整体效率。

2.2 基于模型辨识的自整定方法

(1)通过向控制对象施加特定激励信号(如阶跃信号、伪随机序列),采集输出端的动态响应数据,利用最小二乘法、卡尔曼滤波等算法构建系统的数学模型(如一阶惯性加纯滞后模型),再基于模型参数按照预设公式计算PID参数,这种基于数据驱动的建模方式能精准捕捉系统的动态特性,尤其适用于反应机理复杂的聚合反

应、催化转化等工艺环节。(2)自适应模型辨识技术可实时更新模型结构与参数,当工艺条件因原料性质变化、设备老化等因素发生漂移时,能自动修正模型偏差,确保PID参数始终与当前系统特性匹配,这种动态适配能力在连续化生产流程中,可有效避免因模型失配导致的调节精度下降,维持工艺参数的长期稳定性。(3)结合频域辨识方法能从响应数据中提取系统的幅频特性与相频特性,基于Nyquist稳定判据设计的PID参数可显著提升系统的鲁棒性,在处理存在高频噪声干扰的压力控制、流量调节等场景时,能滤除无效信号对模型辨识的干扰,使整定结果更贴近实际控制需求[1]。

2.3 基于智能算法的自整定方法

(1) 将遗传算法、粒子群优化等智能优化算法引入 PID参数寻优过程,通过构建以超调量、调节时间、稳 态误差为目标的适应度函数, 在参数空间中进行全局搜 索,这种不依赖精确模型的优化方式能突破传统试凑法 的局部最优陷阱, 尤其在多变量耦合系统(如精馏塔多 组分控制、流化床温度-压力协同调节)中展现出独特 优势。(2)改进型模糊PID自整定算法通过建立偏差与 偏差变化率的模糊规则库,利用隶属度函数动态调整比 例、积分、微分系数的权重分配, 使控制器在处理非线 性、时变特性显著的工艺参数(如高聚物粘度调节、溶 剂回收塔液位控制)时,具备类人类决策的灵活响应能 力,减少参数突变带来的系统波动。(3)深度强化学习 算法通过与控制对象的持续交互获取反馈信号,在探索-利用的动态平衡中自主学习最优控制策略,这种端到端 的学习模式能自动适配复杂工业环境中的未知扰动,在 应对突发工况(如原料进料量骤变、换热器结垢导致的 传热效率下降)时,可快速生成自适应调节方案,提升 系统的抗干扰能力。

2.4 基于专家经验的自整定方法

(1)将领域内积累的典型工况调节经验转化为结构化的规则库,借助模糊推理引擎,把实时监测数据与规则库进行高效匹配,从而生成PID参数调整指令。这种融合实践智慧的方法,在处理类似历史工况的扰动时,能够迅速调用成熟的调节策略,有效缩短系统受到扰动后恢复稳定状态所需的时间。(2)专家系统通过案例推理模块存储历史整定案例,当遇到新的工艺波动时,通过相似度算法检索最匹配的案例并适配参数,这种基于案例的推理机制在处理间歇式生产(如批次反应釜的温度曲线控制)中,能结合不同批次的原料特性实现参数的个性化调整,提升产品质量的一致性。(3)融合知识图谱技术的专家系统可构建参数影响因子的关联网络,当某一工艺参数(如反应压力)发生异常波动时,能自动追溯其与流量、温度等参数的耦合关系,在调整PID

参数时兼顾多变量协同作用,这种系统性的调节思维在 复杂化工装置的整体控制中,可避免局部调节对其他环 节造成的次生扰动。

3 工业自动化系统中PID控制器的参数自整定方法 面临的挑战与解决思路

3.1 面临的挑战

3.1.1 系统非线性及时变性的干扰

在工业生产环境中,控制对象的动态特性往往随着工况变化呈现显著的非线性特征,例如在化学反应过程中,随着反应物浓度的变化,反应速率常数可能呈现非线性变化,导致系统的传递函数参数随时间发生漂移,这种时变特性使得基于固定参数模型设计的PID控制器难以在全工况范围内保持理想的调节效果。当系统从低负荷状态切换到高负荷状态时,设备的动态响应速度可能发生显著变化,原本在低负荷下整定的PID参数在高负荷工况下可能出现调节滞后或超调量过大的问题,而频繁的工况切换会进一步加剧参数失配的程度,使系统长期处于非最优调节状态。设备的老化、催化剂活性的衰减等缓慢变化的因素,会使系统的动态特性在长期运行过程中逐渐发生改变,这种累积性的时变特性如果不能被及时感知并进行参数修正,可能导致系统的调节精度逐渐下降,最终影响产品质量的稳定性。

3.1.2 噪声与扰动的影响

工业现场存在多种噪声源,如传感器的测量噪声、电机运行产生的电磁干扰、流体流动产生的湍流噪声等,这些噪声会叠加在系统的反馈信号中,导致PID控制器获取的偏差信号包含虚假信息,从而影响参数自整定的准确性,例如在流量测量中,高频噪声可能使自整定算法误判系统的动态响应特性,导致计算出的比例系数偏小,无法有效抑制扰动。生产过程中还存在各种不可预测的扰动,如原料成分的突然变化、外界环境温度的剧烈波动等,这些扰动会使系统的输出偏离预期轨迹,干扰自整定算法对系统动态特性的辨识,在参数整定过程中,如果不能有效滤除这些扰动的影响,可能导致整定出的参数无法适应系统的真实动态特性,降低控制器的抗干扰能力^[2]。

3.1.3 多变量耦合系统的整定难题

在复杂的工业自动化系统中,多个控制变量之间往往存在强耦合关系,例如在精馏塔控制中,塔顶温度和塔底液位之间相互影响,一个变量的变化会引起其他变量的波动,这种耦合特性使得单独对某一回路进行PID参数自整定难以获得理想的控制效果,因为整定某一回路的参数时,可能会对其他关联回路产生不利影响,导致整个系统的动态性能下降。多变量耦合系统的参数空间维度较高,自整定算法需要同时优化多个回路的PID

参数,这不仅增加了算法的复杂度,还可能由于参数之间的相互制约,导致寻优过程陷入局部最优解,无法找到全局最优的参数组合,耦合关系的动态变化也会使自整定算法的鲁棒性受到挑战,在工况变化时,原本整定好的参数可能不再适应新的耦合关系。

3.2 解决思路

3.2.1 引入自适应机制

为应对系统的时变特性和非线性特征,可在PID参数自整定算法中引入自适应机制,通过设计在线辨识模块,实时监测系统的动态特性变化,当检测到系统参数发生漂移时,自动触发参数重整定过程,使PID参数能够跟踪系统的动态变化。例如,采用递归最小二乘算法对系统的传递函数参数进行在线估计,根据估计结果实时更新PID参数的整定公式,使控制器能够在系统特性变化时快速调整自身参数,保持良好的调节性能。可设计变结构自适应控制策略,根据系统的运行状态切换不同的参数整定模式,在系统处于线性区域时采用常规自整定算法,在非线性区域则切换到针对非线性特性优化的算法,提高控制器在全工况范围内的适应性。

3.2.2 增强抗干扰能力

为提高PID参数自整定算法在噪声和扰动环境下的 鲁棒性,可采用滤波技术对反馈信号进行预处理,例如 使用卡尔曼滤波器对测量信号进行平滑处理,滤除高频 噪声,使自整定算法能够基于更真实的反馈信息进行参 数计算。在参数自整定过程中引入扰动观测器,通过构 建扰动模型对系统中的未知扰动进行估计,并在参数整 定过程中对扰动的影响进行补偿,减少扰动对系统动态 特性辨识的干扰。可设计基于鲁棒控制理论的参数自整 定算法,在参数整定过程中考虑系统的不确定性和扰动 范围,使整定出的PID参数能够在一定的扰动范围内保 持系统的稳定性和调节精度,提高控制器的抗干扰能力。

3.2.3 多变量解耦与协同整定

针对多变量耦合系统的整定难题,可采用解耦控制技术,通过设计解耦补偿器消除变量之间的耦合关系,将多变量系统转化为多个近似独立的单变量系统,然后分别对每个单变量系统进行PID参数自整定,降低整定难度,例如在多变量系统中,采用对角优势化方法设计解耦矩阵,使耦合系统的传递函数矩阵近似为对角矩阵,实现各控制回路的近似解耦。可采用协同优化算法对多变量系统的PID参数进行整体整定,通过构建包含多个控制回路动态性能指标的综合目标函数,利用智能优化算法在高维参数空间中进行全局寻优,找到使整个系统动态性能最优的参数组合,在优化过程中,充分考虑各参数之间的相互影响,使整定出的参数能够协调各控制回路的动作,提高整个系统的控制效果^[3]。

结语

综上所述,PID控制器参数自整定方法在工业自动化系统中不断演进。尽管面临系统非线性、噪声干扰与多变量耦合等挑战,但通过引入自适应机制、增强抗干扰能力、推进多变量解耦与协同整定,有望突破困境。未来,应进一步融合新兴技术,如深度学习、边缘计算等,提升自整定方法的智能性与实时性,助力工业自动化系统向智能化、高效化迈进,以适应不断变化的工业生产需求。

参考文献

- [1]张子安.工业自动化中PID仪表控制系统的优化设计[J].工程建设与发展,2025,4(3):259-261.
- [2] 黄策. 自动化控制系统中的PID参数整定方法与应用研究[J]. 建筑工程与设计,2024,3(8):175-176.
- [3]刘冰琪,解初,刘鹏.PID控制器最优参数整定方法的研究[J].科技风,2022(19):1-3.