电气自动化设备节能优化方法

刘妍钰

广东天汇综合能源服务有限公司 广东 湛江 524000

摘 要: 电气自动化设备能耗受设备特性、运行工况及系统设计等多因素影响。本文剖析了电机、变压器等设备特性及负载变化、环境因素等对能耗的作用机制,提出设备选型、运行控制、能源管理及系统集成优化策略,涵盖高效电机选用、负载匹配控制、能源监测分析等内容,为降低电气自动化设备能耗、提升能源利用效率提供技术参考。 关键词: 电气自动化设备; 能耗影响因素; 节能优化技术; 系统集成

引言

在工业自动化快速发展的当下,电气自动化设备广泛应用,其能耗问题日益凸显。设备能耗受多种因素交织影响,从设备自身特性到运行工况,再到系统设计,每个环节都关乎能源利用效率。深入分析这些因素,探索有效的节能优化方法,不仅能降低企业运营成本,还能响应节能减排号召,对推动工业可持续发展具有关键意义。

1 电气自动化设备能耗影响因素分析

1.1 设备自身特性

电机性能直接关系到设备的能耗水平, 电机效率决 定电能转化为机械能的比例,效率低下意味着更多电能 以热能形式损耗。功率因数反映电机对电网电能的利用 效率, 功率因数偏低会增加无功功率传输, 导致电网损 耗上升[1]。不同类型电机的能耗表现存在差异, 异步电 机在轻载时效率下降明显,而同步电机在稳定负载下效 率更高且功率因数可调,更适合长期运行的工况。变压 器损耗是电气系统能耗的重要组成部分, 空载损耗源于 铁芯中的磁滞和涡流效应,即使在无负载时也持续存在, 与铁芯材料和制造工艺密切相关。负载损耗则随负载电 流变化, 由绕组电阻产生, 电流越大损耗越高。变压器 容量选择不合理会加剧能耗,容量过大导致空载损耗占 比上升,容量过小则在满载时负载损耗激增,无法兼顾 不同负载条件下的节能需求。控制器效率影响着设备的 整体能耗,控制器在信号处理过程中,芯片运算和电路 转换会消耗能量,处理速度与能耗之间存在平衡关系。 不同控制算法对控制器能耗产生影响,复杂算法虽能提 升控制精度,但需更多运算资源,能量损耗相应增加; 简化算法能耗较低,却可能在动态响应上存在不足,间 接导致设备运行效率下降。

1.2 运行工况

负载变化对设备能耗有着显著影响,轻载状态下设备效率通常较低,输入功率中有效做功比例下降,多余

能量以损耗形式浪费: 重载时设备虽接近额定效率, 但 持续重载可能导致部件过热,额外增加散热能耗。变负 载工况下,设备需频繁调整输出,每次调整过程中都会 产生过渡损耗,且难以稳定在高效区间运行,整体能耗 高于稳定负载条件。运行时间模式影响能耗总量,连续 运行的设备若长时间处于非必要工作状态,会造成无效 能耗累积;间歇运行虽能减少部分能耗,但频繁启停过 程中, 启动瞬间的冲击电流和设备预热阶段的低效率, 也会增加额外能量消耗。不合理的运行时间安排, 如设 备空转时间过长或在低负载时段持续运行,都会加剧能 源浪费。环境因素通过影响设备性能间接改变能耗,高 温环境会降低电机和控制器的散热效率, 为维持正常运 行温度, 散热系统需消耗更多能量, 高温可能导致绝缘 材料性能下降,增加漏电流损耗。高湿度环境可能引发 设备部件锈蚀,增加接触电阻,导致电能传输损耗上升; 粉尘积累会堵塞散热通道,降低散热效果,迫使设备在 更高能耗状态下运行。

1.3 系统设计

系统架构在能源传输和分配中的能耗表现不同,集中式控制系统需要长距离传输控制信号和电能,线路损耗随距离增加而上升,且集中处理单元的高负荷运行也会产生较多能耗。分布式控制系统将控制功能分散到靠近设备的节点,缩短能源传输路径,减少传输损耗,各节点可根据局部需求动态调整能耗,整体效率更高。系统架构若未考虑能量流动路径优化,会导致能量在传输和转换过程中产生不必要的损耗。线路布局对能耗的影响不可忽视,线路长度增加会使电阻增大,电流通过时的热损耗随之上升;截面积过小的导线无法承载额定电流,不仅会产生较大电压降,还会因过热增加能耗。敷设方式不当也会影响能耗,如线路并行敷设时的电磁感应会增加附加损耗,环境温度过高的敷设路径会进一步加剧导线电阻的上升。设备匹配程度直接影响系统整体效率,电机与负载匹配不当,会使电机长期运行在非额

定工况,轻载时效率骤降,重载时可能超出额定功率导致过热损耗。控制器与执行机构之间的信号延迟或功率不匹配,会使执行机构动作滞后或过度反应,增加无效能耗。设备之间的参数不匹配还会引发连锁反应,导致整个系统运行效率下降,形成恶性循环的能源浪费。

2 电气自动化设备节能优化技术策略

2.1 设备选型优化

高效电机选择需结合其技术特点与应用场景, 高效 电机通过优化铁芯材料、改进绕组设计提升电能转化效 率,在额定负载下效率明显高于普通电机。高功率因数 特性减少无功功率消耗,降低电网传输损耗。根据设备 负载特性选择电机,长期稳定负载官选用同步电机,变 负载工况可考虑变频调速电机, 轻载频繁的场景则适合 永磁同步电机,确保电机在主要运行区间保持高效。节 能型变压器选用需了解不同类型的节能原理, 非晶合金 变压器采用非晶态合金材料制作铁芯, 磁滞损耗显著低 于传统硅钢片变压器, 空载损耗大幅降低[2]。干式变压 器无需绝缘油, 散热效率高且负载损耗控制优良, 适合 潮湿或洁净环境。选用时需结合负载波动情况,长期轻 载场景优先考虑非晶合金变压器,负载变化大的场合则 需平衡空载与负载损耗,避免单一指标优化导致整体能 耗上升。低功耗控制器选择依赖其技术设计, 低功耗控 制器采用新型芯片架构,运算过程中能量消耗更低,通 过优化电路布局减少待机损耗。部分控制器集成休眠模 式,闲置时自动降低功耗却不影响快速唤醒。不同场景 对控制器要求不同,连续运行的设备需兼顾低功耗与处 理速度, 间歇工作的设备可侧重深度休眠功能, 确保在 满足控制需求的前提下能耗最低。

2.2 运行控制优化

负载匹配控制通过动态调整设备输出适应负载变化, 变频调速技术改变电机供电频率, 使转速随负载需求变 化, 轻载时降低转速减少输入功率, 避免能量浪费。该 技术能让电机在较宽的负载范围内保持较高效率, 尤其 适合风机、水泵等变负载设备。控制过程中需实时监测 负载变化, 快速响应调整输出, 减少过渡过程中的能耗 波动。智能启停控制基于多条件判断实现精准操作,结 合时间设定与负载检测,设备在预设时段或负载低于阈 值时自动停机,负载恢复时平稳启动。启动过程采用软 启动方式,降低冲击电流,减少启动瞬间的能量损耗。 针对间歇运行设备,通过分析工作周期优化启停间隔, 避免短时间内频繁启停,平衡停机节能与启动损耗。多 设备协同控制通过统筹调度提升系统效率,根据各设备 的运行需求和能耗特性, 优化工作顺序, 避免高峰时段 集中运行导致的能源紧张。设备间通过信息交互协调工 作节奏,如上游设备完成工序后下游设备再启动,减少 中间环节的等待能耗。协同模式需适应生产流程变化, 在保证生产连续性的前提下,使系统整体运行在高效能 耗区间。

2.3 能源管理优化

能源监测与分析系统由传感器、传输网络和分析模 块组成, 传感器采集各设备的实时能耗数据, 传输网络 将数据稳定传送至分析模块。分析模块梳理能耗变化规 律,识别异常能耗时段和设备,为针对性优化提供方向。 系统需覆盖设备运行全流程,确保数据完整反映能耗状 况,同时具备数据可视化功能,直观呈现能耗分布和变 化趋势。能源调度与优化基于监测数据动态分配能源, 根据设备优先级和能耗需求, 调整能源供应比例, 高优 先级设备在能源紧张时优先保障, 低优先级设备适当限 制能耗。结合能源供应波动情况,在供应充足时为高能 耗设备安排工作,供应紧张时切换至低能耗运行模式。 调度过程需保持响应速度,避免因调整滞后导致能源浪 费或影响生产。能源存储技术为能源高效利用提供支持, 电池储能适合存储中长时间的多余能源, 在用电高峰或 断电时释放,维持设备稳定运行。超级电容储能则擅长 应对短时功率波动, 快速吸收或释放能量, 减少电网冲 击。存储系统需与设备运行节奏匹配,在设备低负载时 存储能源, 高负载时补充供电, 形成能源动态平衡, 提 升整体利用效率。

3 电气自动化设备节能优化系统集成方法

3.1 系统集成架构设计

分层架构设计构建多层次节能优化体系, 感知层部 署传感器,采集设备能耗参数、运行状态和环境数据,为 节能分析提供原始信息。控制层接收数据,通过算法生成 控制指令,调节设备参数实现动态节能。管理层整合信 息,分析整体能耗趋势,制定长期策略。各层通过标准化 接口传递数据,感知层为控制层提供依据,控制层向管理 层反馈结果, 形成闭环协作, 确保节能指令高效传递。分 布式架构设计将节能功能分散到设备节点,每个节点具备 独立感知、分析和控制能力,可自主调节能耗[3]。节点间 通过网络协同, 共享信息但不依赖中心节点, 单个节点故 障不影响整体,提升容错能力,便于新增设备接入,随规 模扩大保持稳定节能效果。混合架构设计融合分层与分布 式优势,核心设备用分层架构确保集中管控,边缘设备用 分布式架构增强局部响应。复杂场景中,关键设备通过控 制层和管理层统一调度, 小型设备自主调节, 通过网关互 通数据。此模式保障核心系统精度,适应边缘设备灵活部 署,按设备特点选择架构。

3.2 节能优化软件模块集成

数据采集与预处理模块对接设备接口,采集电流、 电压等能耗数据及运行状态信息。处理不同格式数据, 转换后标准化存储。预处理剔除异常和重复数据,对缺失数据插值,确保分析基于完整数据集。按数据重要性设采集频率,平衡质量与系统负荷。节能算法实现模块将策略转化为代码,负载匹配算法比对输出功率与负载需求,调整电机转速等参数,使设备在高效区间运行。智能启停算法分析生产节奏,工序间隙触发休眠,降低待机能耗,同时预留唤醒时间保障响应。算法具备自学习能力,通过数据积累优化参数,适应设备老化或工况变化。能源管理与决策模块整合数据和算法结果,生成能耗报表,展示设备和时段能耗分布。分析趋势预测变化,结合生产计划制定能源方案,减少冗余。识别高能耗环节,提出改造建议,为决策提供依据,推动从被动节能向主动优化转变。

3.3 通信协议与接口设计

通信协议选择需适配传输需求,Modbus结构简单,适合中小系统低速传输,广泛用于电机等设备监测。Profibus 支持高速交换,适用于实时性要求高的场景,实现参数快速调节。EtherCAT 同步性能强,协调多设备时序,减少生产线因不同步导致的能耗浪费。选择时考虑系统规模、实时性和兼容性,确保传输效率与稳定。接口标准化设计统一通信规范,定义传输格式、速率和校验方式,使不同设备无缝对接。传感器与控制器用标准化接口,减少转换损耗。设备与管理层通过网络接口通信,实现跨平台共享。规范预留扩展空间,适应新设备接入,避免升级障碍。数据传输安全设计保障数据完整与保密,用加密算法处理敏感数据,防止篡改窃取。访问控制限制节点权限,感知层仅上传数据,控制层仅接收授权指令,避免干扰。监测异常传输,出现频繁重试等情况时切断连接,确保系统安全运行。

3.4 系统集成实现步骤

需求分析与规划阶段明确节能目标,结合生产流程 梳理设备规律和能耗特点。制定功能清单,确定采集参 数、控制范围和管理结构,形成规划方案,明确任务和节点,为实施提供指引。设备选型与采购依据方案选择传感器、控制器等,传感器范围和精度匹配能耗特性,控制器能力满足算法需求,通信设备适应现场环境^[4]。验证兼容性,确保设备协同工作,安装时校准参数,保证数据准确和指令有效。系统开发与集成阶段搭建平台,实现模块对接,数据采集与设备联通,算法与控制逻辑关联,管理模块与存储系统对接。布置线路连接设备,测试传输稳定性。进行联调,验证数据从采集到执行的流程,确保功能达标和设备协同响应。系统测试与验收阶段模拟工况验证性能,在不同负载下测试调节准确性,在故障时测试容错能力。对比能耗数据评估效果,检查界面操作和数据展示。确认功能完整、运行稳定、文档齐全后交付,进入日常维护阶段。

结束语

电气自动化设备节能优化是一项系统且长期的工作, 涉及设备选型、运行控制、能源管理及系统集成等多个 层面。通过全面分析能耗影响因素,针对性地实施节能 优化技术策略与系统集成方法,可显著降低设备能耗, 提升能源利用效率。未来,随着技术的不断进步,需持 续探索创新节能手段,推动电气自动化设备向更高效、 更节能方向发展。

参考文献

- [1] 杨程喆. 电气设备自动化调试系统的节能设计[J]. 电子技术,2024,53(10):192-193.
- [2]刘若男.电气设备自动化的节能技术应用[J].集成电路应用,2023,40(12):286-287.
- [3] 黄亮.建筑电气设备自动化的节能技术研究与应用[J].中国设备工程,2023,(08):223-225.
- [4] 张弛.建筑电气设备自动化节能技术的研究与应用[J].工程与建设,2023,37(01):340-342+404.